Landscape map of Utah. Courtesy of Utah Geological Survey. SLS: Salt Lake City; SRS: San Rafael Swell; B
& R: Basin and Range; T: Transition Zone.
|
In the road trip, I drove via US 40 west from Colorado and traveled directly south of the Uinta Range. These mountains, containing the highest peaks in
the state (in excess of 13k feet), owe their origin to the Laramide Orogeny
(Cretaceous—Eocene), and are part of the Middle Rocky Mountains Physiographic
Province. The Uintas are an east-west,
fault-bounded anticline that shed sediments off to related basins to the north
(greater Green River basin) and south (greater Uinta basin). The core of the mountains consists almost
entirely of the Uinta Mountain Group, a late Proterozoic (late Precambrian)
quartz sandstone that is a red to pink color.
This hue is probably due to oxidation of hematite found in the
rock. The age and color of the unit
strongly resembles similar rocks exposed in Glacier National Park and Grand
Canyon National Park.
Mining activities associated with metals are almost
non-existent in the mountains (lack of igneous intrusions) and therefore “exciting”
mineral specimens generally are unavailable. Perhaps the most spectacular
geological feature associated with the range is the evidence left behind by
Pleistocene glaciation in the form of cirques and u-shaped valleys. Many airlines heading to Salt Lake City from
the east often fly along the crest of the mountains and window seats provide spectacular
views. Auto travelers wanting a closer
look at the range have their choice of two north-south roads trending through
the mountains. UT 191 heads north from
Vernal to the Flaming Gorge area while near the east end of the range UT 150,
known as the Mirror Lake Road, runs from Kamas north to Evanston, Wyoming. I consider this latter road the most
spectacular mountain road in the state; unfortunately, snow did not allow my
travel this year.
The Wasatch Range is the major north-south trending
range in Utah and runs from the Idaho border to mid-state where it “transforms”
into the Wasatch Plateau that in turn continues as part of the Colorado
Plateau-Great Basin Transition Zone southwest to the state border (see map). The mountains are the westernmost part of the
Middle Rocky Mountains and the Wasatch Fault (west side) marks the beginning of
the Great Basin.
Unlike the Uinta Mountains, the Wasatch Range has a
variety of rock types covering many
different ages from the Precambrian to the Pleistocene. There also are numerous mineralized areas
generally related to Cenozoic igneous intrusions; many are close to Salt Lake
City and some seem OK for collecting but determining land ownership is a tricky
situation. I always consider one or more of the following: 1) read Jim Wilson’s great book, Rock, Mineral and Fossil Localities of Utah;
2) check ownership and collecting issues with the local office of US Forest
Service; 3) visit at a “rock shop”---I have found people at Rockpick Legends in
Salt Lake City particularly friendly and informative.
The Wasatch Range at Salt Lake City is impressive and
I always appreciate the high peaks as well as the numerous major canyons
cutting into the range. In arriving from
the east I followed I-80 traversing through Parley’s Canyon and again was duly
impressed with both the canyon mouth as well as the western view to the basins
and mountains. Immediately north of this canyon is Emigration Canyon, the route
of early LDS settlers into the valley. To the south is Mill Creek Canyon that
actually terminates within the mountains (but has a road). Further south are the Cottonwood Canyons, two
canyons that are perhaps the most spectacular of the mountain accesses and will
take travelers to modern boom “towns” that now house large ski resorts;
however, at one time the canyons hosted major mining areas. The best known of the old mining camps is
probably Alta (up Little Cottonwood) where several dumps usually offer collecting possibilities. However, this trip snow covered past collecting areas.
A hike up to Bell’s Canyon produces a fantastic
view. The mountain glacier that carved
the canyon did not reach the valley floor and left behind terminal and lateral moraines.
|
What I appreciate most about these two canyons is
their great display of geology, beginning with the entrances. Big Cottonwood Canyon (UT 190) starts out
following Big Cottonwood Creek in a V-Shaped canyon, one that was created by
stream erosion/cutting. However, about
half- way up, the valley widens out into a nice U-shaped canyon indicating the presence
of a Pleistocene mountain glacier (but one that did not reach the end of the valley). The road terminates at the ski resort of
Brighton but a partially paved road leads over Guardsman Pass into the Park
City.
The glacier in Big Cottonwood Canyon reached about
half-way down and deposited a terminal moraine—with a nice U-shaped canyon
extending upstream to Brighton.
|
Immediately south of Big Cottonwood is Little Cottonwood
Canyon containing the road (UT 210) to the old mining town of Alta with its
numerous mine dumps. Little Cottonwood
has a U-shape throughout its entire length indicating the glacier actually
extended beyond the mountains. Near the
entrance of the canyon is the Temple Quarry where giant blocks of quartz
monzonite were taken out and transported downtown to construct the LDS Temple.
Mouth of Little Cottonwood Canyon showing the
characteristic U-shape of the glacially scoured canyon.
|
Salt Lake Valley itself has quite conspicuous
geological features that most locals call benches and actually are ancient
shorelines of Pleistocene Lake Bonneville.
The Lake Bonneville Basin covers a large portion of western Utah but
also extends into eastern Nevada and southern Idaho—perhaps on the order of
~20,000 sq. mi. Although Lake Bonneville
is a late Pleistocene event, freshwater lakes have been present, off and on, in
the Basin for the last 1-2 million years (perhaps longer) with Great Salt Lake
being the current incarnation. But it
was Lake Bonneville that created these shoreline sand and gravel deposits with
the highest bench being the Bonneville Level about 5100 feet in elevation and
easily observable on the western flanks of the Wasatch Range. The Provo Level, at about 4740 feet, is very
noticeable as the foundation for many buildings at the University of Utah. Lake Bonneville had a complex history of “ups
and downs” attributed to catastrophic overflows near Red Rock Pass in southern
Idaho and climate changes. By perhaps 12
ka Lake Bonneville was “finished” as a large lake. The Great Salt Lake is a small remnant of Lake
Bonneville and is “salty” since it does not have an outlet.
I spent several years studying the large mammals
that inhabited the shoreline environments of Lake Bonneville and the record is
quite impressive: Musk Oxen, Bison, Mammoths, Bears, Mastodons, Mountain Sheep,
Horses, Wolves, Foxes, and others. The Utah Geological Survey (www.geology.utah.gov) has several
publications and presentations on both Lake Bonneville and the Pleistocene
fossils.
Across the valley to the west is a dominant topographic
feature, the Oquirrh Mountains. Within these mountains, and highly visible,
is the Bingham Canyon Mine, one of the largest open-pit mines in the world and
in production since 1906. The mine has a
footprint of nearly 2000 acres, is perhaps 3200 feet deep, and 2.5 miles
wide. The mine managers, Kennecott Utah
Copper Corporation, also operate a concentration plant, a smelter, and a
refinery. The mining is from a porphyry copper deposit with a very low grade
copper ore of disseminated grains and coatings of minerals in a quartz
monzonite (granite type rock). I wanted
to visit the mine overlook; however, a giant rockslide (perhaps the largest in a made-made
structure in history) recently closed any visitor viewing of the pit.
The open pit copper mine at Bingham Canyon. Photo courtesy of Kennecott Copper and Rio
Tinto.
|
The Salt Lake City valley is situated in the Basin
and Range since the great fault fronting the Wasatch Range is the beginning of
the Province. From this fault west to the Sierra Nevada Mountains is an area
unique to the country. Geographers often
call it the Great Basin since all of the drainage is internal—there are no
streams that externally drain the area.
Geologists prefer Basin and Range, a term indicating numerous uplifted
and fault-bounded mountains (horsts) separated by down-dropped valleys
(grabens). Unlike the mighty ranges of
the Rocky Mountains (compressional tectonics), the Basin and Range is related
to late Tertiary crustal stretching (extensional tectonics). In addition, many of the ranges have late
Tertiary intrusions and outpourings of extrusive igneous rocks. This igneous event is responsible for several
deposits of metallic minerals associated with boom towns (Gold Hill, Tintic,
Ophir, etc.) and other mining activities, and offer a wealth of opportunities
for collectors. I have visited and
collected at many of these in past trips.
For example, see postings: A Pretty Green Rock (12-8-11); Wendover Will and Adamite (4-23-12); Azurite at Gold Hill (4-26-12); What is That Green Stuff ? "Medmontite" (8-2-12); Notch Peak: Great geology (6-2-11).
I always enjoy the short rides heading east up the
Cottonwood Canyons to the ski resorts and old mines of Brighton (in a nice
glacial cirque), and Alta. There are geological
signs along the road indicating the formations and the scenery is
spectacular. However, I was unable to
take my usual walk around the cirque lake near Brighton, and the road to Park
City over Guardsman Pass was closed. The Utah Geological Survey has a great
travel road log describing a trip from Salt Lake City up Parleys Canyon to Park
City, over Guardsman Pass and back down Big Cottonwood Canyon: http://geology.utah.gov/online/pdf/pi-09.pdf.
Near the mouth of Little Cottonwood Canyon is the G.
K. Gilbert Geologic View Park described at: http://geology.utah.gov/surveynotes/geosights/gilbertpark.htm.
I also squeezed in a walk downtown as the Survey has
a download describing the building stones: http://geology.utah.gov/geo_guides/slc_bldg_stones/index.htm.
The Great Bar at Stockton, Utah, as described by
G. K. Gilbert. Photo courtesy of US
Geological Survey (Monograph 1, 1890).
|
And finally (penultimate), I hopped in my car and headed west on I-80 to get a closer look at Great Salt Lake and the Bonneville Salt Flats. What I wanted to do is revisit a site that G. K. Gilbert described as “The Great Bar at Stockton, Utah.” This is a fantastic land form, a really large lake sandbar or actually a series of bars and spits, associated with Lake Bonneville (rather than an adult watering hole). I found the site by heading south on UT 36 south from the town of Tooele for perhaps 5 miles and then turning west on a gravel road.
I also hustled north of Salt Lake City to the
“causeway” (UT 127), a road stretching from the main land (city of Syracuse)
west to Antelope Island, the largest island in the lake. The island holds a state park, 500
free-ranging bison (plus other animals and birds), and some of the oldest
Precambrian rocks in Utah.
It was a busy trip, but an interesting one. The Show was great and I even picked up a
couple of specimens for my collection.
The trip home was uneventful, except for the snow at Park City, and the traffic through Denver!
ark City!