On my first trip to western Colorado and eastern
Utah I was somewhat amazed at all of the red rocks exposed virtually
“everywhere”. Coming from Kansas with
its gray and cream limestones I had trouble understanding how “those rocks got
so red”. Equally fascinating was the
fact that many exposures were covered with some sort of a dark to black
coloring. Upon stopping near Moab, Utah,
I made the discovery (personal) that early Native Americans had chipped
pictures on the rocks and from that point forward I was hooked on “red rocks”. That curiosity has existed to this day and I
hope it never disappears.
I later found out that red rocks with black surficial
coloring confuse many people as they travel through “Red Rock Country”. What I observed, the black coloring, is
termed Desert Varnish, the subject of this small piece. Back in the “olden days”, at least back in
the days when I was a ranger at Dinosaur National Monument, “we” thought Desert
Varnish came from dark-colored manganese that appeared on the surface of the
rock via water “seeping” out. Since that
time, numerous articles and research have given me a different story about
Desert Varnish.
Desert Varnish is just one type of coating that
geologists generally refer to as Rock Coatings, and all are actually types of
geochemical sediments deposited on the surfaces of various rocks. Naturalists also, at one time, believed that
rock coatings were restricted to desert environments; however, Dorn (1981, 2004, 2014) has
shown the feature may be present in a variety of environments and may form on a
variety of rocks. It is just that Desert
Varnish is so observable in arid environments.
Great scenery in the Colorado Plateau. |
The Colorado Plateau (CP) is one of the most
fascinating and beautiful areas in the U.S. and Colorado is fortunate to have
the region essentially in our backyard.
The world’s foremost geological authority (and my good friend) on the
CP, Ron Blakey of Northern Arizona University, has best described the region: The brilliantly colored rocks of the
Colorado Plateau comprise a truly spellbinding landscape. Within this 130,000 square miles of rocky
bliss there are magnificent escarpments, graceful flat-topped mesas, surreal
towers and monuments, and multitudes of deep, sinuous canyons, all framed by an
azure sky. Unlike some other notable
landscapes on our planet, the Colorado Plateau is dominated by rocks. Not just any rocks, mind you, but colorful,
stratified rocks containing subtle textures and minute details that bear
witness to the environments in which they originated. These rocks, rich in various shades of red,
yellow, orange, brown, tan, purple, and green, are composed of many familiar
rock types—limestone, shale, sandstone, conglomerate, mudstone—which manifest
as long lines of colorful cliffs or stupendous stair-stepped canyons. When geologists think of paradise on earth,
the Colorado Plateau is what comes to mind (2008).
The CP is interesting, geologically speaking, from
several points of view. I will mention
but two: 1) the extreme stability of the region since the latest part of the Precambrian
(last ~600 million years). The CP is
surrounded by tectonically active areas, that is, mountain ranges such as the
Uinta and Wasatch Mountains, and to the west the Basin and Range. However, the CP has not experienced major
building events such as the compressional Laramide Orogeny (the tectonic event
uplifting the Rocky Mountains with ocean-continent plate conversion) or the
tensional (stretching) orogeny of the Basin and Range. The CP seems to have existed as a somewhat rigid
block undergoing faulting, volcanism, rotation, tilting, intrusions, and
vertical movement (both up and down) but not severe mountain building
periods. During much of the Paleozoic
and Mesozoic Eras (~546-66 Ma) the CP was near, at, or below sea level and so
marine sedimentary rocks were commonly deposited (although this is a vast over
simplification and numerous terrestrial [land] formations such as the great
Navajo Formation dune field) exist (see above photo; and 2) the large exposures of red (but also
yellow and orange) rocks.
The first question then becomes, what causes the
dominantly red to orange colors in rocks of the CP? The simple answer is iron oxide, Fe2O3,
a combination of iron and oxygen in a mineral called hematite. In some instances the iron oxide imparts a brownish
or yellow color, due to the “mineral” limonite (iron oxide with water in the
chemical formula). Geologists also know
that varying amounts of the iron minerals can cause significant color changes
in the rocks, and that it takes a minor amount of iron oxide to turn a
sandstone bright red or orange.
The second question is: what is the origin of the
iron oxide in the rocks? It appears that
most of the iron can be traced to weathering of minerals eroded from the intracratonic
mountains of the Ancestral Rockies. I
have mentioned these mountains before as a group of uplifts with accompanying
basins centered near the Four Corners Region.
Uplift commenced perhaps 320 Ma in the early part of the Pennsylvanian
Period and the ranges did not completely disappear (from erosion) until
sometime in the Mesozoic. The two major
ranges are referred to as the Ancestral Front Range Uplift and the Ancestral
Uncompahgre Uplift and seem related to compressional events along the
southeastern margin of North America (the Ouachita and Marathon Orogenies with continent-continent
plate convergence). At any rate, after
the early and middle Paleozoic, rocks (mostly marine) were eroded off the
ranges as sediments into the accompanying and adjacent basins, while the
basement rock, granites and other igneous rocks, were exposed to erosion. A “typical” granite is composed of
light-colored quartz and feldspar, and black biotite or hornblende; the latter
are often called ferromagnesian minerals due to their composition (high in iron). As these ferromagnesian minerals chemically
weather, they turn into hematite ---the red color is produced! The quartz, almost immune to chemical
weathering, produces “sand-sized” grains, perfect for the rock sandstone. The feldspar either chemically weathers to
clay minerals, or physically breaks down into small fragments incorporated into
the sandstone. These sediments
(unconsolidated) are then cemented together into sedimentary rocks, are often
eroded themselves, and the cycle starts over.
So, a “little bit of hematite” can cause “an awfully lot of red rocks”.
That answer leads us back to Desert Varnish, a rock
coating that is common in the red rocks of arid areas where scarce vegetative
cover, rock surface stability, mild winds, and a source of clay “dust”
exist---the CP. Extensive research by
Dorn (1981, 2004, 2014) has shown that the formation of Desert Varnish is an
extremely complex process--- like so many of the features that seem rather
simple but upon detailed research turns out to be quite complex! Clay minerals are the dominant ingredient in
Desert Varnish and arrive by wind. The
dark color, and the “cementing agent, is manganese and iron supplied by
chemical breakdown of both bacteria and some of the clay minerals. The end result is that large parts of the red
rocks, especially the sandstone cliffs, are covered by the dark-colored Desert
Varnish.
The CP has been home to several different groups of
Native Americans over the millennia but among the more interesting (in terms of
the rock drawings) were members of the Fremont Culture. The Fremont were a pre-Columbian (ca.
700-1300 A.D.), Ancestral Puebloan people, and a group with a strong
relationship to the better known Ancient Ones (Anasazi). They subsisted by hunting (deer, sheep, small
mammals), gathering edible wild plants (such as Pinon Nuts and berries), and
growing corn, squash and beans along river/creek bottoms. The Fremont also were fine artists and left
behind an amazing record of rock art, predominantly petroglyphs (picked or
chipped into the rock surface), but also some pictographs (painted on the rock
surface). And, their favorite place to
chip a petroglyph was on an orange/red sandstone wall covered by black Desert
Varnish. The chipping went through the
thin layer of varnish and exposed the red sandstone underneath to provide a
dramatic contrast in color.
Pictographs, rock painting, attributed to members of the Barrier Canyon Culture, perhaps 2000 years old. Buckhorn Wash Pictograph Panel, San Rafael, Utah. |
Some of the more interesting petroglyphs include the
“human-like” figures, almost always male, trapezoidal in shape with arms, legs,
often fingers, and adorned with ornaments like necklaces and headdresses. The lizards are spectacular, and commonly the
art includes sheep, deer, handprints, concentric circles, and fish. My favorite is the flute player, “Kokopelli”.
The Fremont rock art is fascinating and I have spent
hundreds of hours scouring the back country of the CP trying to locate
sites. At one time, I hiked around and
attempted to photograph every known petroglyph and pictograph in Dinosaur
National Monument. If readers are
interested in Fremont rock art they may drive to many sites in the San Rafael
Swell (central Utah), Nine Mile Canyon (central Utah), and Dinosaur National
Park (northeastern Utah). Perhaps closer
to home, but more difficult to access, are sites in northwestern Colorado.
Lizard
petroglyph at Dinosaur National Monument.
|
Flute player petroglyph at Dinosaur National
Park. Note how some of the Desert
varnish has spalled off since construction of the petroglyph.
|
So, it all seems to come together: deposition, mountain building, erosion, sun,
microbes, wind, clay, climate, culture, petroglyphs, plate tectonic activities
in the Ouachita Orogen 320 Ma ago leading to an Ancestral Puebloan chipping
away, to a kid from Kansas amazed at finding a projectile point.
It’s like déjà vu all over again (Yogi Berra).
REFERENCES CITED
Blakey, R. and W. Ranney, 2008, Ancient Landscapes of the Colorado Plateau: Grand Canyon Association.
Dorn, R.I. 2014, Rock Varnish
(desert varnish): An Internet Primer for Rock Art Research: http://alliance.la.asu.edu/dorn/VarnishPages/VarnishPrimerIntro.html
Dorn, R.I. 2004. Desert Varnish, in Encyclopedia of
Geomorphology , ed. A.S. Goudie, Routledge: London
Dorn, R.I. and Oberlander, T.M. 1981. Microbial origin of desert varnish. Science 213.