As a CSMS and Western Dakota Gem and Mineral Society delegate, I
recently attended the combined American Federation of Mineralogical
Societies—Rocky Mountain Federation of Mineralogical Societies meetings in
Tulsa, Oklahoma. The host society was
the Tulsa Rock and Mineral Society and members did a fantastic job. I am uncertain of attendance; however, members
came from across the U.S.
As a native Kansan, I have
traveled I-35 and I-70 hundreds of times; therefore, whenever possible I like
to ramble around on the two-lane state highways taking in the different scenery
and stopping to examine a few outcrops---as I did on my trip to and from
Tulsa. In addition to mind numbing,
travelers who stay on the interstates often miss observing some really
interesting landforms. Oklahoma is one
of those states with a diverse geology and physiography that travelers often
miss. In fact, the geology is actually
quite complex with the folded and thrust faulted Ouachita Mountains in the
southeast, the Wichita Mountains with an interesting granitic core in the
south, salt plains and gypsum caves in the northwest, former zinc and lead
mines in the northeast, and lots of land in-between. In addition, there is a plethora of fossil
collecting localities with an abundance of Paleozoic specimens. Therefore, this
blog and two others that follow will attempt to entice travelers to visit some
of the really great sites in the state.
Of the eight physiographic
divisions in the lower 48, Oklahoma contains three: Interior Plains, Interior
Highlands, and Atlantic Plain. The Interior Plains dominate the western and
central portions of Oklahoma while the Interior Highlands form high hills and
mountains in eastern Oklahoma. Lastly,
in a surprise to many people the Atlantic Coastal Plain occupies extreme
southeast Oklahoma.
Physiographic regions of Oklahoma (Oklahoma
Geological Survey). OZ the Ozark
Plateau, O the Ouachita Mountains, CP the Coastal Plain. Compare with map above. |
Perhaps the most
interesting area in Oklahoma is the Interior Highlands composed of the Ozark
Plateaus, the Arkansas River Valley, and the Ouachita Mountains. As a school kid growing up in Kansas we were
“told by the teacher” that some of the Ozark Mountains were present in the
southeastern part of our state. Now,
that “fact” was of great interest to me---mountains in Kansas. Wow. I
was living out in the prairies of central Kansas and thought that mountains
were always of the high, snow-covered, peak variety! Later in life, as a geology student, I
learned that about 50 sq. miles of Mississippian rocks cropped out in extreme
southeastern Kansas and those rocks were actually part of the Ozark
Plateau---no snow-covered peaks. When teaching geology, I informed my students
that the only surface “mountains” in Kansas were the large piles of
“chat"—overburden and tailings from the lead-zinc mines in the Ozark
section.
However, I can’t really
blame my grade school teacher for any misinformation since she (always a “she”)
had to simultaneously take care of two grades.
It wasn’t exactly a one-room school (my mother taught in those) but a
four room school with two grades in each room.
That situation continued in high school where freshmen and sophomores
took classes together as did juniors and seniors. Kindergarten and Junior High---didn’t know
they even existed. It was six man
football and 47 total students in high school.
But, life was good in a small town.
Most of the Ozark Plateaus
(or Mountains in the vernacular) are located in the southern one-half of
Missouri, and northern Arkansas east of the Mississippi River Embayment. They are a large domed plateau where the
relief (elevation gain and loss) is caused by stream erosion rather than strong
vertical uplift (as in the Rocky Mountains) or large-scale folds and thrust
faults with differential erosion (as in the Appalachian Mountains). However, the Plateau was slightly domed
upward as a result of the Ouachita Orogeny during the Pennsylvanian (~323-299
Ma). This action, however slight, caused
the outcrops to get progressively younger away from the geological core of the
Plateau (the igneous and volcanic St. Francois Mountains in southeastern
Missouri). The Ozarks of Northeast
Oklahoma are on the southwest flank of the Plateau and most outcrops are gently
dipping sedimentary rocks of Mississippian and Pennsylvanian age (see
geological map).
Map (courtesy of Kansas Geological Survey) of Tri-state Mining District
with major mining districts shown in dark blue. |
The Springfield Plateau
section of the Ozarks (see maps above) has well-exposed Mississippian (~359-323
Ma) limestones and the surface topography is one of gently rolling hills.
Perhaps the most interesting aspect of this province is the presence of the
Tri-state Mining District (Missouri—Kansas—Oklahoma), a past producer of lead
and zinc. The initial discovery of lead
and zinc ore seemed to have been in Missouri sometime in the 1830’s-40’s and
production of lead, mostly it seems from surface cobbing, was important during
the Civil War. Kansas followed with
production in the early 1870’s while Oklahoma, then “Indian Territory” (became
a state in 1907), did not begin commercial recovery until the early
1890’s. Initially, the Oklahoma ore was
shipped by rail or wagon to smelters in Joplin, Missouri, or to southeastern
Kansas (Weir City and Pittsburgh). By the
1920’s several plants in Oklahoma were smelting the ore. Production of lead and
zinc in the Tri-state district lasted nearly a century and the last mines
finally closed in the 1970’s. Peak
production seemed to be about from World War I until the beginning of World War
II. In 1926, the Oklahoma County of
Ottawa was the world’s largest source of lead and zinc, and during World War I
it produced about 50 percent of the zinc and 45 percent of the lead needed in
the War (Oklahoma Historical Society, 2007).
One of Oklahoma’s favorite
sons is Mickey Mantle, my boyhood hero. The “Mick” grew up in Commerce, near
the mining center of Picher, where his father worked in the lead and zinc
mines. I suspect that most “gentlemen”
of my age wish they still had their 1961 Topps baseball card of the Mick! I cherish my baseball (locked in the vault,
sigh) signed by the 1962 Yankees including Berra, Mantle and Maris.
The primary ores of the
Tri-state district were the sulfides: galena (PbS) and sphalerite (ZnS). The
genesis of the ore is of great interest to geologists but is still not fully
understood. What researchers do know is
that cherty limestones were deposited in Mississippian marine waters and
indicate a time of crustal stability.
However, the early part of the Pennsylvanian was a time of crustal
instability as South America bumped into southeastern North America (these are
current configurations and terms) and begin to shove previously deposited basin
sediments on to the continent. Today we
know this tectonic event as the Ouachita Orogeny. Probably related to this collisional and
plate-destructive event was the uplift of mountains in Colorado, New Mexico and
Utah that geologists term the Ancestral Rockies. In Oklahoma, shoving and bumping produced the
Wichita and Arbuckle Mountains to the west of the Ouachitas. In the Tri-state area the uplift related to
Ouachita tectonics was more subtle; however, the previously deposited cherty
limestones were subjected to subaerial erosion.
During this erosional period the soluble limestone created voids,
cavities and even caves but left behind the sturdy chert. Later in the Pennsylvanian, shallow marine
waters again returned to the Tri-state and “mud” was deposited that today
geologists know as shales of the Cherokee Group.
The Kansas Geological Survey
(2001) believed that metal-bearing hydrothermal solutions originated deep
within the earth’s crust and journeyed upwards along faults and fractures. As the solution reached the cherty limestone,
at least what was left of it, the metals were deposited in the voids, as cement
between grains, and as finely disseminated grains. The Cherokee shales
essentially served as a cap and hot solutions could not proceed further. These Tri-state ores, and all of the Ozark ores,
are termed Mississippi Valley Type as the ore fluids were expelled from the
Arkoma Basin and Reelfoot Rift along the previously mentioned faults and
fractures (Cosatt, 2009).
I have written about the
Reelfoot Basin before so interested readers should consult the November 21,
2013 Blog. The Arkoma Basin is actually a subsurface basin (Foreland Basin in
geology-speak) that received thousands of feet of sediments shed off the rising
Ouachita Mountains (~20,000 feet of Pennsylvanian rocks). Today the Arkoma Basin is an important area
for petroleum production and exploration and is generally located between the
Ozarks and the Ouachitas.
Specimen from Picher, Oklahoma with quartz crystals
(Q) and sphalerite (S) attached to a bed of chert (C). Width ~6.0 cm.
|
Chalcopyrite crystals on dolomite, Picher, Oklahoma.
Width ~10.5 cm.
|
Large boulder of smithsonite from Morning Star Mine,
Oklahoma. Note security guard in Field Museum, Chicago, 1906. Public Domain
photo.
|
For the rockhound, the
Tri-state District has been a wonderful place to acquire crystals of galena,
sphalerite, chalcopyrite, dolomite, marcasite, and a variety of others
including a huge bolder of smithsonite.
If you notice, I used a past tense in the previous sentence since most
of the old mines are closed and many have been reclaimed and/or flooded. After the termination of active mining in the
early 1970’s, the Tri-state district was an environmental disaster and in the
1980’s the U.S. Bureau of Mines and later the Environmental Protection Agency,
along with various state agencies, begin the slow process of mine and land
restoration. The old underground mines,
no longer supported by pillars, begin to subside and the sinkholes filled with
water that in turn was contaminated by some nasty metallic sulfides that ended
up leaching out into the ground water. I
have already mentioned the huge “chat” piles (piles of overburden) that
dominated the landscape. Again, some
nasty sort of metals leached into the ground water, and in addition, the piles provided
fine particles that were moved to new areas by the wind. In many localities these chat piles were a
cheap source of road aggregate and material was spread on county and township
roads. In turn, the traffic created
dust-size particles that were blown on agriculture fields containing “feed” for
cattle. The livestock ate the feed and
some of the metals, such as lead, were absorbed into milk which in turn was
consumed by residents, especially children.
The good news is that great progress has been made in the environmental
restoration.
The highest “mountains” in Kansas---although these
chat piles are located near Picher, Oklahoma.
Note water leaching out some nasty stuff.
|
I was “lucky enough” (read
old enough) to have participated in some collecting forays into the Tri-state
district and came out with some pretty nice specimens. Today collectors are on the lookout for “old
specimens” brought out in the “lunchbox” by miners (to quote Bob Jones). A couple of my specimens from Kansas are of
that variety, others were self-collected.
The southern or
southwestern section of the Ozark Plateau is known as the Boston Mountains and
across the state line in Arkansas they are the highest and most rugged section
of the Ozark Mountains. The dissected
Boston plateau has capping rocks of Pennsylvanian age with the oldest rocks
representing stream deposits flowing off the Ouachita Mountains into an ocean
while the younger rocks are mostly deltaic.
In Oklahoma these Pennsylvanian sandstones and shales (the Boston Mountains
in Arkansas) are generally referred to as the Crookson Hills. The Hills have granted to the state a
fantastic bit of scenery for they are heavily forested with trees such as
hickory and their streams/lakes are famous for providing fishing opportunities
and boating. On one geology field trip a
long time ago, I was able to collect numerous pieces of tree ferns (a group not
really related to modern deciduous trees); however, over the years the
specimens sort of migrated to museum and laboratory collections.
South of the Ozark Plateau
the mighty Arkansas River turns east (entering Oklahoma flowing south from
Kansas) and slices a large valley through Pennsylvanian sandstones and shales
(see geology map). This valley continues into Arkansas all the way east to the
master stream, the Mississippi River.
The river valley separates the Ozarks from the Ouachita Mountains to the
south. This valley is at the location of
the subsurface Arkoma Basin discussed above.
South of the Arkansas
River Valley are the Ouachita Mountains, an area of folded ridges and valleys
that is a geologist’s (and sightseer’s) paradise. Clastic Paleozoic rocks predominant,
(deposition in a shallow marine environment, the continental shelf), as opposed
to limey rocks in the Ozark Mountains.
During most of the Paleozoic, in what is now the Ouachitas, a deep
offshore abyssal plain, perhaps more than 3000 feet below sea level, existed
(Arkansas Geological Survey, 2012). But
then the “big bump” came along as South America was pushed “north” and collided
with Laurentia.
Google Earth© image of folded Ouachita rocks in
McCurtain County, Oklahoma. Broken Bow lake is partially visible at
extreme right (east). |
So, these folded Ouachita Mountains
have an interesting geological history--with deposition in a deep water basin
during the Ordovician and Devonian, but a wild change in the Mississippian and
Pennsylvanian. During this later
Paleozoic “action” what is now South America collided with Laurentia (the
geological name for what is now the North American continent). The rocks and sediments in the marine basin
were thrust up on the continent at this convergent and destructive plate
boundary. This collision compressed and
folded the rocks as they were thrust northward.
Perhaps as much as 50,000 feet of Paleozoic rocks, much of it back
shale, quartzitic sandstone, or bedded chert rocks are present.
The Ouachitas are a
western continuation of, and closely related to, the Appalachian
Mountains. The major difference is that
the Oklahoma-Arkansas Mountains are the result of South America bumping into
Laurentia while the Appalachians are related to the collision of Africa with
Laurentia. The result of all of these collisions is the formation, at the end
of the Paleozoic, of a vast supercontinent called Pangaea.
I have not really
collected much (mostly just studying the stratigraphy) in the Oklahoma Ouachita
Mountains except for exploring a few road cuts on a field trip to Broken Bow in
the southeastern part of the state. The group collected small quartz crystals
with included “green stuff”—chlorite, from what I believe is Ordovician
sandstone.
South of the Ouachita
Mountains are outcrops of poorly consolidated, gently dipping, off-lapping
rocks of Cretaceous age. These
unconsolidated sands, gravels, clays, and limestone of mostly shallow marine
origin are part of the proto-Gulf of Mexico; they are generally featureless and
belong to the Gulf Coastal Plain, a part of the Atlantic Coastal Plain.
REFERENCES CITED
Brosius, L. and R.S.
Sawin, 2001, Leas and Zinc Mining in Kansas: Kansas geological Survey, Public
Information Circular 17.
Cosatt, M., 2009,
Geophysical Evidence for the Origin of the lead-Zinc deposits in the Tri-state
Mining District, KS, MO, and KS.: Geological Society of America Abstracts with
Programs No. 31-1.
Johnson, K.S. (compiler),
2008, Geological History of Oklahoma: Geological Survey of Wyoming Educational
Publication 9.